

Simulator Development for Nanoelectronic and Electromagnetic Devices

Gerhard Klimeck*, R. Chris Bowen, and Tom Cwik Jet Propulsion Laboratory, California Institute of Technology

*Email: gekco@jpl.nasa.gov

Phone: (818) 354 2182

Web: http://www-hpc.jpl.nasa.gov/PEP/gekco

High Performance Computing at JPL

- JPL is the Lead Center for Robotic Space Exploration
 - Deep Space Missions
 - Earth Observing Missions
- JPL Builds Observational Systems for Remote Sensing
 - Imaging instruments across all wavelengths
 - Spectroscopic and in-situ instruments for planetary investigation
 - Fundamental technology development for new instruments
- JPL High Performance Computing is a Key Technology
 - Modeling and simulation of devices and instruments
 - Rapid data reduction and analysis
 - Advanced software design, implementation and application

http://mars.jpl.nasa.gov

http://www-misr.jpl.nasa.gov

High Performance Computing at JPL

Current Work (Selected)

Computational Modeling and Design

Through the application of high performance computing, achieve physics-based, high-fidelity modeling of components needed for JPL missions

- Electronic Modeling of Nanoelectronic Devices
- Electromagnetic Modeling of Microelectronic Devices

High Performance Computing at JPL Current Applications (selected)

- Advanced Electromagnetic Design
 - Designed grating structures to optimize light coupling into quantum well infrared photodetectors; performance enhanced a factor of 10 for imaging arrays.
- Rapid Data Reduction and Analysis
 - Software for atmospheric retrieval (removing effects of atmospheric scattering from measured data) moved to advanced parallel computers. Used in Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) flight project.
- Code Optimization and Parallelization
 - We maintain expertise in application software development for large parallel computing platforms.

http://makalu.jpl.nasa.gov/aviris.html

Simulator Development for Nanoelectronic and Electromagnetic Devices

- Motivation
- 1D modeling
 - Bandstructure
 - Resonant Tunneling
 - NEMO (NanoElectronic MOdeling)
- •3D modeling
 - Quantum Dots
 - •NEMO-3D
- Design and Synthesis
 - GENES (Genetically Engineered Nanostructured Devices)
- Future Efforts
- Conclusions

JPL

Microdevices Head for Atomic Dimensions

- Moore's Law shows quantum devices in the far future.
- Lithography data alone is deceiving: Layer thicknesses are already on the atomic length scale!
- Commercial devices see quantum limitations:
 - direct tunneling
 - state quantization
- Advanced devices utilize the quantum mechanical behavior:
 - Resonators (RTDs)
 - Active and passive sensors tunable by design - not by material system choice (QWIP).
- -> 1D quantum device modeling
- -> NEMO

Microdevices Head for Single-Electronics

Reduction of Device Size

Reduction of electron # Reduction of Capacitance

Problem:

Increase in thermal particle noise for tens and hundreds of particles

Solution:

Quantum Dots
Artificial Atoms/Molecules
Single Electronics

System is stable against thermal particle noise

Global Optimization for Microelectronic Device Design

Objective:

- Synthesis and optimization of microelectronic devices
- Limit and focus number of experiments needed to produce design

Approach:

- Analysis with existing electromagnetic and electronic structure modeling codes
- Apply parallel genetic algorithm library for global optimization
- Use massively parallel platforms to complete designs

Impact:

- Enable device optimization for microelectronic-based missions.
- Near Term:
 - Optimize devices.
- Long Term:
 - Provide instrument-system level optimization

Simulator Development for Nanoelectronic and Electromagnetic Devices

- Motivation
- 1D modeling
 - Bandstructure
 - Resonant Tunneling
 - NEMO
- •3D modeling
 - Quantum Dots
 - •NEMO-3D
- Design and Synthesis
 - GENES (Genetically Engineered Nanostructured Devices)
- Future Efforts
- Conclusions

JPL

Microdevices Head for Atomic Dimensions

- Moore's Law shows quantum devices in the far future.
- Lithography data alone is deceiving: Layer thicknesses are already on the atomic length scale!
- Commercial devices see quantum limitations:
 - direct tunneling
 - state quantization
- Advanced devices utilize the quantum mechanical behavior:
 - Resonators (RTDs)
 - Active and passive sensors tunable by design - not by material system choice (QWIP).
- -> 1D quantum device modeling
- -> NEMO

Bandstructure Basics Electron Conduction in Solids

- Layers of different atoms are deposited with monolayer control.
- We can engineer the electron bands.

Bandstructure Engineering Basics

Bandstructure Engineering Basics

Resonance Energies / Eigenvalues

Bandstructure Engineering Applications

Transitions / Transport

Bandstructure Engineering Applications

Transitions / Transport

Photon Absorption

Detectors

Quantum Well Infrared Detector

Bandstructure Engineering Applications

Transitions / Transport

Quantum Cascade Laser

Resonant Tunneling Diode

12 different I-V curves: 2 wafers, 3 mesa sizes, 2 bias directions

Conduction band diagrams for different voltages and the resulting current flow.

50nm	1e18	InGaAs
7 ml	nid	InGaAs
7 ml	nid	AlAs
20 ml	nid	InGaAs
7 ml	nid	AlAs
7 ml	nid	InGaAs
50 nm	1e18	InGaAs

NanoElectronic MOdeling (NEMO) Simulation Strained InGaAs/AlAs 4 Stack RTD with Asymmetric Barrier Variation

Vary One Barrier **Thickness**

Four increasingly asymmetric devices: 20/50/20 Angstrom 20/50/23 Angstrom 20/50/25 Angstrom 20/50/27 Angstrom

Presented at IEEE DRC 1997, work performed at Texas Instrument, Dallas

0.4

Applied Bias (V)

0.6

0.8

0.2

1000

0.4

Applied Bias (V)

0.2

0.6

0.8

1000

0.8

Where is NEMO compared to other models?

What is Needed for Quantum Electron Transport?

NEMO

Charging
Bandstructure
Scattering
Interference

Drift-Diffusion Boltzmann Eq. Non-Equilibrium Green Functions

Schrödinger Equation

Transport with particle interaction

Quantum Mechanics

NEMO: A User-friendly Quantum Device Design Tool Formalism, Physics, and Technology

NEMO Genealogy

- NEMO was developed under a government contract to Texas Instruments and Raytheon from 1993-1997
 - Theory
 - Roger Lake, Chris Bowen, Gerhard Klimeck, Tim Boykin (UAH)
 - Graphical User Interface
 - Dan Blanks, Gerhard Klimeck
 - Programming Approach, Philosophy, and Prototypes
 - Bill Frensley (UTD), Gerhard Klimeck, Chris Bowen
 - Coding Help
 - Manhua Leng (UTD), Chenjing Fernando, Paul Sotirelis, Dejan Jovanovic, Mukund Swaminathan (UTA),
 - Experiments for verification
 - Ted Moise, Alan Seabaugh, Tom Broekaert, Berinder Brar, Yung-Chung Kao
- Gerhard Klimeck and Chris Bowen were the core developers.
 They are both with JPL now.

Simulator Development for Nanoelectronic and Electromagnetic Devices

- Motivation
- 1D modeling
 - Bandstructure
 - Resonant Tunneling
 - •NEMO
- 3D modeling
 - Quantum Dots
 - •NEMO-3D
- Design and Synthesis
 - •GENES (Genetically Engineered Nanostructured Devices)
- Future Efforts
- Conclusions

Microdevices Head for Single-Electronics

Reduction of Device Size

Reduction of electron # Reduction of Capacitance

Problem:

Increase in thermal particle noise for tens and hundreds of particles

Solution:

Quantum Dots
Artificial Atoms/Molecules
Single Electronics

System is stable against thermal particle noise

Examples of 3D Confined Structures

Quantum Dots:Litho-based, GaAs/AlGaAs,

GaAs/AlGaAs, InGaAs/InAlAs systems

Cylinder shaped M Reed et al, TI (1988)

Fullerenes, C60:

Carbon based Electronic and mechanical appl.

Rice Univ., NASA Ames

Quantum Dots:

Self-assembled, InAs on GaAs.

Pyramidal or dome shaped

(f)

R. Leon et al, JPL (1998)

Quantum Dots:

Self-assembled Ge on Si.

Dome shaped

S. Williams et al, HP (1998)

Quantum Dots Applications

- Memory: Store discrete charge in potential wells.
- Transistors:
 Use discreteness of channel conduction.
- Logic: Use electrostatically coupled quantum dots.

Chou @
Princeton
Room Temp.
Single Electron
Memory

Hitachi: 128Mbit Integration demonstrated

Lent, Porod @ Notre Dame: Quantum Cellular automata, electrostatically coupled quantum dots.

Harris @ Stanford: Room temperature single electron transistor

JPL

Quantum Dots as Optical Detectors

Desensitizing QWIP to Polarization

- Problem:
 Quantum wells are "blind" to light impinging orthogonal to the detector surface.
- Standard Solution:Use gratings to turn polarization
- New Approach:
 Quantum dots have a built-in anisotropy and state quantization in all three dimensions
 - -> absorption at all angles

Quantum Wells: Absorption has strong incidence angle dependence

Standard Solution:

Grating

Quantum Dots: Absorption has weak incidence angle dependence

Development of a 3D Quantum Simulator

Problem:

 Develop quantum dot based technologies for digital and optoelectronic applications.

Approach:

- Deliver a graphically driven quantum dot design tool.
- Leverage JPL's strength in massively parallel computation.

Impact:

- Near Term Optical Detection:
 - Guidance for choice of sizes, materials, shapes.
 - Optimize optical absorption.
- Long Term:
 - Provide general modeling tools for the analysis of ultra-scaled structures.

We are toolmakers!

Optical Absorption in a Pyramidal Dot

State Occupation

Absorption vs Energy

Two Issues influence the absorption strongly:

- Only the lowest 4 states contain electrons, so transitions between higher states do not result in optical absorption.
- Bright transitions occur between states that posses opposite parity in the direction of the optical field.

Temperature Dependence of Quantum Dot Absorption Spectrum

State Occupation

States Occupation — T=4.2K — T=300K E_F 03 05 07 09

Absorption

Higher temperatures => More occupied states => More transitions.

Summary - After 2 Months of Work

Achievements:

- Prototyped general eigenvalue solver which scales as order N^{1.1} rather than N³.
- Solved N=10⁶ grid point problem on 1 CPU in 1 hour.
- Developed graphical interface prototype.

Future Resource Requirements:

- Bandstructure models cause 400x increase in required CPU time.
 - -> computation is CPU not memory limited
 - -> need massively parallel machines with good wall-clock turn-around
- Engineering optimization/evolution will require thousands of runs
 - -> need next generation supercomputer

Plans:

- Incorporate mechanical strain.
- Incorporate sp3s* and sp3d5 bandstructure models.
- Electron charging effects.
- Prototype parallel version of eigenvalue solver.
- Prototype client-server approach to interface graphical user interface to supercomputers.

We are toolbuilders

Animation of the 7th Eigenstate in a Pyramidal Quantum Dot

Simulator Development for Nanoelectronic and Electromagnetic Devices

- Motivation
- 1D modeling
 - Bandstructure
 - Resonant Tunneling
 - •NEMO
- •3D modeling
 - Quantum Dots
 - •NEMO-3D
- Design and Synthesis
 - GENES (Genetically Engineered Nanostructured Devices)
- Future Efforts
- Conclusions

JPL

Global Optimization for Microelectronic Device Design Genetically Engineered NanoElectronic Structures: GENES

Objective:

- Optimize and synthesize electronic devices
- Limit and focus number of experiments needed to produce design.

Approach:

- Use existing electromagnetic and electronic structure modeling codes
- Apply genetic algorithm for global optimization
- Use massively parallel platforms

Impact:

- Enable device optimization for microelectronic-based missions.
- Near Term:
 - · Optimize devices.
- Long Term:
 - Provide instrument-system level optimization

Basic Genetic Algorithm

- Genetic algorithm parameter optimization is based on:
 - Survival of good parameter sets
 - Evolution of new parameter sets
 - Survival of a diverse population
- Optimization can be performed globally, rather than locally.

Basic Evolution Operations

- Each set (Si) consists of several parameters (Pj)
- The parameters Pj can be of different kinds: real, integers, symbols,

Gross Exploration

 Crossover explores different combinations of existing genes.

Fine Tuning

Creation of new gene values.

Global Optimization via Genetic Algorithms

$$F(x,y) = \frac{\sin(x)}{x} \frac{\sin(y)}{y} + 0.7 \frac{\sin(x-4)}{(x-4)} \frac{\sin(y-4)}{(y-4)}$$

Global Optimization: Genetic Algorithm Development

Genetic Algorithm Convergence

pop = 100, 300 generations, steady-state (10%), 2-point crossover p = 0.85, mutatation p = 1/2

Optical Filters with Patterned Arrays (Frequency Selective Surfaces-FSSs)

- E-beam lithography enables:
 - Sub-micron resolution in fabrication, allowing infrared filtering
- Design requires:
 - Tailoring of passbands for specific application
 - •Understanding of element size and shape, periodicity, and materials.

Optical Filter Design

Maximize linear polarization response to prescribed response Minimize opposite and cross polarizations

> 16x16 pixels Mettalization **No Metal**

Genetic Algorithm Design Evolution

Optimization of Slot Array

pop = 630, 300 generations, steady-state (10%), 2-point crossover p = 0.85, mutatation p = 1/64 => $19,467 \sim 2 \times 10^5$

Exhaustive Search: 2⁶⁴ ~ 1.8x10¹⁹

Genetic Algorithm Design and Best Slot Array

2x2 Portion of Array Design

GENES - RTD Structural Analysis

Future Efforts

•1D:

- AC and optical interactions
- Strain
- Bandstructure (sp3d5)
- Sb-based materials

•3D:

- Strain
- Bandstructure
- Scattering
- Coupled dot arrays
- Open Dot Systems

Analysis & Synthesis

- Generalize optimization interface:
 - User input
 - Data output
 - Other algorithms

THz device technology
Detectors
Lasers

AC Simulation - Electron-Photon Interactions Coupled Resonators

$$V_{ep} = \frac{1}{\sqrt{V}} \sum_{\mathbf{q}} U_{\vec{q}} e^{i\vec{q} \cdot \vec{r}} \left(a_{\vec{q}} + a_{-\vec{q}}^{\dagger} \right)$$

Electron-Phonon & Electron-Photon interaction potentials are isomorphic

Future NEMO capabilities:

- small signal AC response, one sideband, treatment via perturbation
- large signal response, multiple sidebands, non-perturbative treatment

Caveat:
Realistic RTD's are
Always coupled
quantum wells

Interesting problem:
Charge oscillations between the wells

Approach:

- Use real space tight binding bandstructure representation to resolve finite size of heterostructures. (nearest and second nearest neighbor sp3s*)
- Examine dependence on transverse momentum and resonance broadening.

Objective:

- Long Term: Develop ability to model electron and hole interactions in a semiconductor laser including transport.
- Short Term: Analyze transport in a hole resonant tunneling diode.

Steps towards Laser Modeling: Heterostructure, Hole Transport

Steps towards Laser Modeling: Heterostructure Hole Transport

Objective:

- Long Term: Develop ability to model electron and hole interactions in a semiconductor laser including transport.
- Short Term: Analyze transport in a hole resonant tunneling diode.

Approach:

- Use real space tight binding bandstructure representation to resolve finite size of heterostructures. (nearest and second nearest neighbor sp3s*)
- Examine dependence on transverse momentum and resonance broadening.

Simulator Development for Nanoelectronic and Electromagnetic Devices

- Motivation
- •1D modeling
 - Bandstructure
 - Resonant Tunneling
 - NFMO
- •3D modeling
 - Quantum Dots
 - •NEMO-3D

 GENES (Genetically Engineered Nanostructured Devices)

uture Efforts

Conclusions

gekco

High Performance Computing Group

Any Questions?

